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Chapter 1

Introduction

A Broad View of Prognostics

In order to increase the mission reliability and reduce the logistics footprint of new Army systems and equipment, consider-
able interest is now being focused on the implementation of prognostics. In this report, the term prognostics refers to
embedded algorithms and sensors that cue the operator and/or maintainer to an approaching need for maintenance so that it
can be performed before failures occur. Figure 1-1 depicts this broad view of prognostics.

Broad-Based Prognostics*
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Figure 1-1

Hardware failures can be classified as either overstress failures (e.g., the failure of a television due to an electrical transient
resulting from a nearby lightning strike) or damage-accumulation failures (e.g., fatigue cracking of a solder connection due
to temperature-cycling stresses). Prognostics is not applicable to overstress failures because such failures typically occur
immediately after the overstress event. Many failures of Army equipment are due to the gradual accumulation of damage
due to cyclic stresses applied over time. We have identified three approaches to performing maintenance before damage-accu-
mulation failure mechanisms occur:
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1. The first we term “precursor-based” failures. With this approach, one monitors performance degradation, and
maintenance is triggered when degradation drops to a specific level. It is difficult to determine which parameter(s) to
monitor for a particular component and what the maintenance threshold should be. University researchers applying this
approach to a single failure mode can typically predict failures just minutes ahead of time. The consensus of the industry-
Army Future Combat System Reliability Availability Maintainability Working Group is that, in the near- and mid-term, this
approach to prognostics will cover less than 10% of failure modes with lead time sufficient to avoid failures during combat
pulses.

2. The life-history approach involves the tracking of usage in terms of component hours, miles or cycles, and the use
of a probabilistic lifetime model such as the Weibull or lognormal distribution. Maintenance can be performed when the risk
of failure becomes too great. This approach, while not as accurate as the previous one, is appropriate for components where
a PoF analysis is not available or where multiple suppliers are involved.

3. The PoF-based approach involves detailed tracking of component load/stress history, in conjunction with the use
of a physics-of-failure (PoF) model, in order to predict how much life remains. Maintenance can be performed when the risk
of failure becomes too great. This approach requires that a PoF analysis be performed on the component first. It is ideal for
structural and other components that are not expected to be replaced by components whose construction varies due, for
example, to multiple suppliers being involved.

Figure 1-2 depicts the "Beyond Legacy Reliability Availability Maintainability (RAM) Practices Scorecard".

Scorecard: Beyond Legacy RAM Practices
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Pit Stop Engineering
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Figure 1-2

The practices on this “scorecard” are based on those identified in recent years by the Army RAM Panel tasked by GEN
Kern. The scorecard is a handy tool for identifying the extent to which "beyond legacy" practices are being used in our
acquisitions. If the practices on the scorecard are not implemented by our contractors, we can expect to achieve legacy




reliability, which will require the legacy logistics footprint and its associated deployability requirements. The two high-
lighted elements are relevant to prognostics:

* “Systematic life-cycle component modeling/aging” requires that the contractor analyze and model components that
may cause system aborts and essential function failures. This provides the analytical underpinning as well as component
models and parameters for implementation of prognostics based on life history.

* “Inclusion of life history and aging in prognostics” is a subsequent, prognostics-implementation step where the
contractor must address the possibility of replacing components that are subject to aging before they fail.

At this point in time, little exists in terms of tools or documentation on how to implement prognostics based on life history.
This technical report documents a first step towards implementation of life-history based prognostics.

Approach

The first element of our approach is motivated by replacement rules for flight-critical components. Such replacement rules
are widely applied to flight-critical components that are subject to damage accumulation or aging. Failures of these compo-
nents cannot be tolerated because of safety-of-flight considerations. Flight-critical components that age are generally
modeled with either a Weibull or a lognormal distribution and highly-conservative replacement rules are then developed.
For example, a replacement rule may be established at the quantity of flight hours where the probability of a new component
surviving equals 0.9999. This is depicted in Figure 1-3.
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The component used in Figure 1-3 is an actual track component that experienced fairly strong aging. The component's life
distribution is modeled with a Weibull distribution with the parameter values indicated. As the graph illustrates, use of a
conservative, flight-critical rule would cause the replacement of the components very early in its life cycle when the risk of
failure is still extremely low. In this example, 82% of the useful life of the component is given up. One need not be so
conservative when working with components that are not flight critical. One can consider replacing such components a bit
later in the cycle as indicated by the green region in the graph above. This would place the component age closer to the
mean, while still avoiding high failure risks.

The second element of our approach stems from a recognition that it is more important to avoid failures during some
portions of the life cycle than others. We anticipate that Army systems will undergo a sequence of phases as illustrated in

Figure 1-4,
Approach
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Figure 1-4

While it may be reasonable to use components until failure in some life-cycle phases, it is not okay to do so in others. In the
first phase above, the system is subject to routine usage and components that age need not be replaced until they fail.
Perhaps the system will soon enter a critical-usage phase, such as a deployment, and failures will need to be zealously
avoided. In the pre-deployment phase, one would like to be able to rank aging components based on their current ages and
the amount of usage expected to be encountered during the critical-usage phase and replace the components most likely to
fail. Following the critical-usage period, aging components could be ranked once again before a subsequent critical-usage
period. In phase 6, the systems returns to routine usage.

Due to the varying need for failure avoidance, we did not just want a less-conservative version of flight-critical component
replacement rules for new components. To handle these sequences, a process is needed that could generate replacement
rules as needed by operators or maintainers, and that can be turned on and off throughout the life cycle. We set out to build a
tool that will enable the implementation of just such an approach.



Conditional Distributions

When Weibull and lognormal distributions are used to model component reliability, one generally assumes that the compo-
nent is new. This is assumed when formulating replacement rules for flight critical components. But this is not generally the
case for components in a vehicle about to undergo a critical-usage phase. A more general approach is to use a conditional
distribution which adjusts the original distribution based on the age of the component at the start of the critical-usage period.
This actuarial approach is used to calculate life insurance premiums. For example, life insurance premiums for a 10-year
policy are more expensive for a 60 year old than for a 20 year old.

A conditional distribution for the track component is depicted in Figure 1-5. The curve that starts at zero miles corresponds
to a new component. At an early age, a new component will have a low failure probability. This is the low-risk tail of the
distribution. Thereafter, the failure probability gradually starts to increase as the component ages. The right-most curve in
the graph corresponds to a component that already has 6,000 miles on it but has not failed. This curve does not have a
low-risk tail and failure probability accumulates rapidly due to the steep slope of the curve. If the system was preparing for a
critical-usage period, it would probably be best to replace such components if they had survived to an age of 4,000 - 6,000
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new.
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Figure 1-5
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Structure of This Report

This technical report documents the development of a Mathematica tool that implements conditional forms of the Weibull
and lognormal distributions. Software which includes the conditional forms of these distributions is not readily available.
Mathematica ships with a standard add-on package Statistics ContinuousDistributions” that includes
functions for the Weibull and lognormal distributions assuming the component is new. This tool is an extension of Mathemat-
ica. The new functions can be found in Appendix A. A palette for the Mathematica graphical user interface which provides
buttons for the new functions can be found at Appendix B. Appendix C contains installation instructions for the new tool.

The new tool was used to model selected components. Chapters 2 and 3 apply the new tool to components whose reliability
is modeled with the Weibull and lognormal distributions, respectively. Chapter 4 illustrates use of the new tool when
analyzing and ranking replacement-before-failure rules for a collection of components. These chapters constitute a basic set
of electronic templates for applying the new tool. A summary for the report is provided in Chapter 5.

The electronic form of each chapter and appendix of this report is a Mathematica 5 notebook. All of the methodology,
computations and graphics in this report are Mathematica executables. The results were generated and inserted by Mathemat-
ica. Thus the technical content of this report is "live" in the sense that it can be re-executed as desired by readers working
with the electronic version (provided they have a copy of Mathematica). Please refer to The Mathematica Book [Wolfram
1999] for information on this software. Additional information, including a free reader, is available at
http://www.wolfram.com/.
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Chapter 2

Conditional Weibull Distribution Example: Track Centerguide

Introduction

This chapter illustrates the new Weibull distribution functions for components that are of any age. The illustration is with an
actual component from a track subsystem that was subject to aging. This chapter may be used as an analysis template for
components that age in accordance with the two-parameter Weibull distribution and are candidates for replacement before
failure.

Weibull Parameter Values for Track Centerguide

AMSAA analyzed test data from a track centerguide. The data were fit to a Weibull distribution. The shape and scale
parameter estimates, respectively, were:

shapeCtrGuide = 5.14;

scaleCtrGuide = 4602;

A shape parameter greater than one indicates that the component ages. A shape parameter of five or more indicates that
strong aging is present. The estimates will be assumed to be the true values of the parameters.

Mathematica has built-in functions for the two-parameter Weibull distribution in the standard add-on package
Statistics ContinuousDistributions”.

Needs["Statistics ContinuousDistributions "]
The usage message for the Weibull distribution is:

? WeibullDistribution

WeibullDistribution[alpha, beta] represents the Weibull
distribution with shape parameter alpha and scale parameter beta. More...

The usage message for the cumulative distribution function, a very common distribution function, is:
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? CDF

CDF [distribution, x] gives the cumulative distribution function of the specified
statistical distribution evaluated at x. For continuous distributions, this
is defined as the integral of the probability demsity function from the lowest
value in the domain to x. For discrete distributions, this is defined as the
sum of the probability density function from the lowest value in the domain to x.

Unfortunately, these functions are for the unconditional probability distributions, thereby assuming that the item is new. The
new add-on package Reliability ConditionalDistributions", provided in Appendix A herein, contains more
general functions for the two-parameter Weibull distribution where the components can be of any age. Before the new
functions can be used, the add-on package Reliability ConditionalDistributions™ must be loaded:

Needs["Reliability ConditionalDistributions "]
The usage message for the current version of the package is:

? ConditionalDistributions

ConditionalDistributions.m (version 1.0) is a package that contains conditional distributions
for the Weibull and lognormal distributions thereby supplementing many of the Weibull and
lognormal functions in the standard add-on package Statistics ContinuousDistributions.

The rest of this chapter will illustrate the use of these new functions with the example component. A list of the new functions
is:

? Reliability ConditionalDistributions™*

Reliability’ConditionalDistributions’

ConditionalCDF ConditionalMeanLifé ConditionalQuantile
ConditionalDistributions ConditionalMeanLifeRemalining ConditionalReliability
ConditionalHazard Conditional PDF

Conditional CDF

One of the most useful functions is the conditional cumulative distribution function (CDF). The usage message is:

? ConditionalCDF

ConditionalCDF[distribution, t, tprime] gives the probability using the specified
distribution that an item which has reached the age tprime will fail by time t.

A plot of the CDF curve for a new track centerguide can be generated from the ConditionalCDF function and the
built-in function Plot:
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pPlotnew = Plot [ConditionalCDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 0],
{t, 0, 7000}, Axes » False, Frame - True,
FrameLabel » {"t, miles", "Conditional Failure Probability",
"Given Current Age 0 Miles", None}, PlotStyle - Hue[.0]];
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Figure 2-1

Examination of the curve reveals that there is little probability of failure before 3,000 miles and failure is quite likely to
occur by 5,000 miles or so. A family of such curves with centerguides of various ages can be generated and plotted thus:

plotl000 =
Plot[ConditionalCDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 1000],
{t, 1000, 7000}, DisplayFunction - Identity, PlotStyle -» Hue[.15]];

plot2000 =
Plot[ConditionalCDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 2000],
{t, 2000, 7000}, DisplayFunction + Identity, PlotStyle - Hue[.3]];

plot3000 =
Plot[ConditionalCDF([WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 3000],
{t, 3000, 7000}, DisplayFunction - Identity, PlotStyle - Hue[.45]];

plot4000 =
Plot[ConditionalCDF[WeibullDistribution{shapeCtrGuide, scaleCtrGuide], t, 4000],
{t, 4000, 7000}, DisplayFunction -» Identity, PlotStyle -» Hue[.6]];

plot5000 =
Plot[ConditionalCDF[WeibullDistribution|[shapeCtrGuide, scaleCtrGuide], t, 5000],
{t, 5000, 7000}, DisplayFunction - Identity, PlotStyle » Hue[.75]];
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plot6000 =
Plot[ConditionalCDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 6000],
{t, 6000, 7000}, DisplayFunction -» Identity, PlotStyle -» Hue[.9]]:

Show[plotnew, plot1l000, plot2000, plot3000, plot4000, plot5000,
plot6000, FrameLabel -» {"t, miles", "Conditional Failure Probability",
"Given Current Age 0,1000,2000,3000,4000,5000,6000 Miles", None},
DisplayFunction - $DisplayFunction];

Given Current Age 0,1000,2000,3000,4000,5000,6000 Miles
1 : T T T T T .

o o o
S N @
T T

Conditional Failure Probability
o
0

A

0 1000 2000 3000 4000 5000 6000 7000

t, miles
Figure 2-2

The plot above shows that centerguides that haven't failed by 3,000 are quite likely to fail by 5,000 miles or so. Centerguides
that haven't failed by 5,000 miles are quite likely to fail in the next 500 miles.

The situation may arise where it will be rather inconvenient for the component to fail during the next 500 miles, perhaps.
This situation may arise because the system is to be deployed and is expected to undergo 500 miles of usage before a
maintenance pulse will occur. We can use ConditionalCDF to plot the probability of failing in next 500 miles as a
function of component age thus:

24




Plot[ConditionalCDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], age + 500, age],
{age, 0, 10000}, Axes -» False, Frame - True,
FrameLabel -+ {"Current Mileage", "Conditional Failure Probability",
"Probability of Failure in Next 500 miles", None}, PlotStyle -» RGBColor[0, O, 1]11;
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Figure 2-3

The plot shows that when the current age reaches approximately 4,500 miles, there is a 50% chance of it failing during the
next 500 miles. Above 4,500 miles, the likelihood of failure is even greater. A table of these values is generated next:



TableForm[Table[{age, ConditionalCDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
age + 500, age]}, {age, 0, 10000, 500}],
TableHeadings -» {None, {"Age(miles)", "CDF(next 500)"}}, TableAlignments - Center]

Age (miles) CDF (next 500)
0 0.0000110958

500 0.000380082
1000 0.00274955
1500 0.0105947
2000 0.0292068
2500 0.0652195
3000 0.125414
3500 0.214605
4000 0.332841
4500 0.472955
5000 0.620243
5500 0.755832
6000 0.863293
6500 0.935121
7000 0.974661
7500 0.992113
8000 0.998111
8500 0.999664
9000 0.999958
9500 0.99999¢
10000 1.

Perhaps all centerguides that have 4,500 or more miles should be replaced prior to deployment.

Conditional Quantile

The conditional quantile function is the inverse of the CDF. The usage message is:

? ConditionalQuantile

ConditionalQuantile[distribution, tprime, g] gives the gth quantile
using the specified distribution for an item that has survived to age tprime.

For example, if we want to know at what age 50% of the centerguides that have already survived 3,500 miles are likely to
fail, we can use the conditional quantile function:

ConditionalQuantile[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], 3500, .5]

4545.08

This is often referred to as the median. This quantile just obtained can be plugged back into the conditional CDF and we
should obtain a probability of 0.5:

ConditionalCDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], %, 3500]

0.5
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And we do. In contrast, the median life of a new centerguide is:

ConditionalQuantile[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], 0, .5]

4285.28

So there is a 50% chance that a new centerguide will survive until 4,285 miles whereas a centerguide that has survived until
3,500 miles has a 50% chance of surviving to 4,545 miles.

It appears that the conditional quantile function may be helpful when considering the replacement of centerguides that are
already in service before failure.

Conditional Reliability

The next function to be examined is the conditional reliability function. The reliability function is one minus the CDF. The
usage message is:

? ConditionalReliability

ConditionalReliability[distribution, t, tprime] gives the probability using the specified
distribution that an item which has reached the age tprime will survive to time t.

A plot that generates a family of reliability curves for centerguides of various ages, essentially the complement of figure 2-2,
is generated thus:

plotnew =
Plot[ConditionalReliability[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 0],
{t, 0, 7000}, DisplayFunction - Identity, PlotStyle - Hue[.0]];

plotl000 = Plot|[
ConditionalReliability[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 1000],
{t, 1000, 7000}, DisplayFunction - Identity, PlotStyle -» Hue[.15]];

plot2000 = Plot[
ConditionalReliability[WeibullDistribution[shapeCtrGuide, scaleCtrGuide}, t, 2000],
{t, 2000, 7000}, DisplayFunction - Identity, PlotStyle -» Hue[.3]];

plot3000 = Plot[
ConditionalReliability[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 3000],
{t, 3000, 7000}, DisplayFunction+ Identity, PlotStyle -» Hue[.45]];

Plot4000 = Plot|[
ConditionalReliability[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 4000],
{t, 4000, 7000}, DisplayFunction - Identity, PlotStyle -» Hue[.6]];

plot5000 = Plot|
ConditionalReliability[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 5000],
{t, 5000, 7000}, DisplayFunction - Identity, PlotStyle - Hue[ .75]1:
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plot6000 = Plot[
ConditionalReliability[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 6000],
{t, 6000, 7000}, DisplayFunction -» Identity, PlotStyle -» Hue[.9]];

Show[plotnew, plot1000, plot2000, plot3000, plot4000, plot5000, plot6000, Axes -» False,
Frame » True, FrameLabel -» {"t, miles", "Conditional Survival Probability",
"Given Current Age 0,1000,2000,3000,4000,5000,6000 Miles", None},
DisplayFunction - $DisplayFunction];
Given Current Age 0,1000,2000,3000,4000,5000,6000 Miles
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Figure 2-4

From the figure above one can see that a new centerguide is highly reliable for a few thousand miles whereas those that
survive to several thousand miles or so are quite unreliable. We now plot the probability of surviving the next 500 miles as a
function of age:




Plot[ConditionalReliability[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
age + 500, age], {age, 0, 10000}, Axes -» False, Frame - True,
FrameLabel » {"Current Mileage”, "Conditonal Survival Probability",
"Survival Probability Next 500 miles", None}, PlotStyle - RGBColor[0, 1, 011;

Survival Probability Next 500 miles
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Figure 2-5

Centerguides that have survived to approximately 4,500 miles, have a 50% chance of failing in the next 500 miles. A table
of such values is generated thus:




TableForm|
Table[{age, ConditionalReliability[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
age + 500, age]}, {age, 0, 10000, 500}],
TableHeadings » {None, {"Age(miles)", "R(next 500)"}}, TableAlignments - Center]

Age (miles) R(next 500)
0 0.999989
500 0.99962
1000 0.99725
1500 0.989405
2000 0.970793
2500 0.934781
3000 0.874586
3500 0.785395
4000 0.667159
4500 0.527045
5000 0.379757
5500 0.244168
6000 0.136707
6500 0.064879
7000 0.0253393
7500 0.00788686
8000 0.00188943
8500 0.000335596
9000 0.0000424567
9500 3.66546x107°
10000 2.06343x1077

A table with both the conditional CDF and reliability values is generated as follows:
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TableForm|[
Table[{age, ConditionalCDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], age + 500,
age], ConditionalReliability[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
age + 500, age]}, {age, 0, 10000, 500}],
TableHeadings -» {None, {"Age(miles)", "CDF (next 500)", "R(next 500)"}},
TableAlignments - Center]

Age(miles) CDF (next 500) R(next 500)
0 0.0000110958 0.999989
500 0.000380082 0.99962
1000 0.00274955 0.99725
1500 0.0105947 0.989405
2000 0.0292068 0.970793
2500 0.0652195 0.934781
3000 0.125414 0.874586
3500 0.214605 0.785395
4000 0.332841 0.667159
4500 0.472955 0.527045
5000 0.620243 0.379757
5500 0.755832 0.244168
6000 0.863293 0.136707
6500 0.935121 0.064879
7000 0.974661 0.0253393
7500 0.992113 0.00788686
8000 0.998111 0.00188943
8500 0.999664 0.000335596
9000 0.999958 0.0000424567
9500 0.999996 3.66546x107°
10000 1. 2.06343x1077

Conditional PDF

Next the conditional probability density function (PDF) will be considered. Its usage message is:

? ConditionalPDF

ConditionalPDF(distribution, t, tprime] gives the probability density function evaluated
at t for an item which has reached the age tprime using the specified distribution.

A plot that generates a family of PDF curves for centerguides of various ages is generated thus:

plotnew = Plot[ConditionalPDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 0],
{t, 0, 7000}, DisplayFunction - Identity, PlotStyle - Hue[.0]];

Plotl000 =
Plot[ConditionalPDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 1000],
{t, 1000, 7000}, DisplayFunction - Identity, PlotStyle -» Hue[.15]];

plot2000 =
Plot[ConditionalPDF[WeibullDistribution|[shapeCtrGuide, scaleCtrGuide], t, 20001,
{t, 2000, 7000}, DisplayFunction -+ Identity, PlotStyle -» Hue[.3]];
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prlot3000 =
Plot[ConditionalPDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 3000],
{t, 3000, 7000}, DisplayFunction - Identity, PlotStyle - Hue[.45]];

plot4000 =
Plot[ConditionalPDF|[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 4000],
{t, 4000, 7000}, DisplayFunction -+ Identity, PlotStyle - Hue[.6]];

plot5000 =
Plot[ConditionalPDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 5000],
{t, 5000, 7000}, DigsplayFunction » Identity, PlotStyle - Hue[.75]];

plot6000 =
Plot[ConditionalPDF{WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 6000],
{t, 6000, 7000}, DisplayFunction - Identity, PlotStyle - Hue[.9]];

Show[plotnew, plot1000, plot2000, plot3000, plot4000, plot5000, plot6000,
Axes - False, Frame - True, FrameLabel -+ {"t, miles", "Conditional PDF",
"Given Current Age 0,1000,2000,3000,4000,5000,6000 Miles", None},
DisplayFunction - $DisplayFunction];

Given Current Age 0,1000,2000,3000,4000,5000,6000 Miles
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Figure 2-6

The curve that starts at zero on the mileage axis corresponds to a new centerguide. The further to the right a curve starts, the
older the centerguide is. Figure 2-6 shows that centerguides that are older have increased probability density. The PDF is
essentially re-scaled by component age so that the area beneath it equals one. It is difficult, however, to obtain any specific
quantitative insight concerning when to replace centerguides of various ages.
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Conditional Hazard

The next new function that we will consider here is the conditional hazard or failure-rate function. The hazard function is
frequently quite useful for component reliability analysis. The usage message is:

? ConditionalHazard

ConditionalHazard[distribution, t] gives the hazard function evaluated at t for an item using
the specified distribution. The conditional hazard is uneffected by the age of the item

The conditional hazard function is the same as the unconditional. Let us graph these functions in order to visualize this more
clearly.

plotnew = Plot[ConditionalHazard[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t],
{t, 0, 7000}, DisplayFunction - Identity, PlotStyle » Hue[.0]];

plotl000 = Plot[ConditionalHazard[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t],
{t, 1000, 7000}, DisplayFunction - Identity, PlotStyle -» Hue[.15]];

plot2000 = Plot[ConditionalHazard[WeibullDigstribution[shapeCtrGuide, scaleCtrGuide], t],
{t, 2000, 7000}, DisplayFunction -» Identity, PlotStyle -» Hue[.3]];

plot3000 = Plot[ConditionalHazard[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t],
{t, 3000, 7000}, DisplayFunction - Identity, PlotStyle -» Hue[.45]];

plot4000 = Plot[ConditionalHazard[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t],
{t, 4000, 7000}, DisplayFunction - Identity, PlotStyle » Hue[.6]];

plot5000 = Plot [ConditionalHazard[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t],
{t, 5000, 7000}, DisplayFunction -+ Identity, PlotStyle - Hue[.75] 1:

plot6000 = Plot[ConditionalHazard[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t],
{t, 6000, 7000}, DisplayFunction - Identity, PlotStyle —» Hue[.9]1]:;



Show[plotnew, plot1000, plot2000, plot3000, plot4000, plot5000, plot6000,
Axes -» False, Frame -» True, FrameLabel » {"t, miles", "Conditional Hazard",
"Given Current Age 0,1000,2000,3000,4000,5000,6000 Miles", None},
DisplayFunction - $DisplayFunction];
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0.006 [

0.005 | ]
Lol
-
]
¥ 0.004 [
go.
—
g
5 0.003
-
s}
|
T 0.002 ]
3

0.001F

0 1000 2000 3000 4000 5000 6000 7000
t, miles
Figure 2-7

The age of the component does not change the hazard function but it does remove the portion of the function to the left of
the component age. This is why the color of the curve changes every 1,000 miles. The hazard curve increases steadily which
indicates aging. The hazard function can be viewed as the probability of failing in the next interval of time given the compo-
nent has survived up to that point in time. A new component faces little hazard for the first few thousand miles. In contrast,
the hazard curve for centerguide that has survived to 6,000 miles is quite steep.

The hazard function might be useful for evaluating when to replace components of various ages.

Conditional Mean Life

The next function to be considered is the conditional mean life. The usage message is:

? ConditionalMeanLife

ConditionalMeanLife[distribution, tprime] gives the conditional mean age at failure
for an item which has reached the age tprime using the specified distribution.

We can generate a graph of the conditional mean life of the track centerguide as a function of its age thus:



Plot[ConditionalMeanLife[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], age],
{age, 0, 7000}, PlotRange - All, Axes - False, Frame - True,
FrameLabel -» {"age,miles", "Mean Life", StringForm["Weibull Shape = ~°, Scale = “~"v,
shapeCtrGuide, scaleCtrGuide], None}, PlotStyle - RGBColor[.5, 0, .5]];
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Figure 2-8

One insight from the graph above is that once a centerguide has successfully reached an age of several thousand miles, one
shouldn't expect it to last much longer. Next, let us tabulate values of centerguide mean life.

TableForm[Table|[
{age, ConditionalMeanLife[{WeibullDistribution[shapeCtrGuide, scaleCtrGuide], age]},
{age, 0, 7000, 500}],
TableHeadings -» {None, {"Age(miles)", "Mean Life (miles)"}}, TableAlignments - Center]

Age (miles) Mean Life (miles)

0 4232.15
500 4232.19
1000 4233.48
1500 4241.53
2000 4267.7
2500 4327.3
3000 4435.38
3500 4602.38
4000 4831.77
4500 5120.29
5000 5460.07
5500 5841.34
6000 6254 .52
6500 6691.36
7000 7145.37

What one may infer from the table and the graph is that once a centerguide has reached 5,000 miles, it should not be
expected to survive another 500 miles. This may be very helpful when considering when to replace centerguides of various
ages.

2-15

R



While the mean life function was interesting, the mean life remaining function may offer additional insight.

Conditional Mean Life Remaining

The final new function to be considered is the conditional mean life remaining function, the usage message for which is:

? ConditionalMeanLifeRemaining

ConditionalMeanLifeRemaining{distribution, tprime] gives the conditional mean life remaining at
failure for an item which has reached the age tprime using the specified distribution.

We can plot the mean life remaining for the centerguide thus:

Plot[ConditionalMeanLifeRemaining|
WeibullDistribution[shapeCtrGuide, scaleCtrGuide], age], {age, 0, 7000},
Axes -+ False, Frame - True, FrameLabel -+ {"age,miles", "Mean Life Remaining",
StringForm["Weibull Shape = ", Scale = """, shapeCtrGuide, scaleCtrGuide],
None}, PlotStyle - RGBColor[.5, 0, .5]];
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Examination of the graph above reveals that if a centerguide survives to several thousand miles, little additional life should
be expected. This is the same insight as we obtained from figure 2-8 but it more readily seen.

Tabulated mean life remaining values are generated as follows:



TableForm[Table[{age, ConditionalMeanLifeRemaining]
WeibullDistribution[shapeCtrGuide, scaleCtrGuide], age]}, {age, 0, 7000, 500}1.,
TableHeadings -» {None, {"Age(miles)", "Mean Life Remaining(miles)"}},
TableAlignments - Center]

Age (miles) Mean Life Remaining(miles)

0 4232.15
500 3732.19
1000 3233.48
1500 2741.53
2000 2267.7
2500 1827.3
3000 1435.38
3500 1102.38
4000 831.772
4500 620.286
5000 460.07
5500 341.344
6000 254.516
6500 191.356
7000 145.371

Perhaps it would be helpful to generate a table with columns for mean life remaining and percentage of mean life remaining
compared to the mean life of a new centerguide:

TableForm|[Table|
{age, ConditionalMeanLifeRemaining[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
age], 100 * (ConditionalMeanLifeRemaining]
WeibullDistribution[shapeCtrGuide, scaleCtrGuide], age]) /
ConditionalMeanLife[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], 0]},
{age, 0, 7000, 500}], TableHeadings » {None, {"Age(miles)", "Mean Life Remaining”®,
"% Mean Life Remaining (New)"}}, TableAlignments - Center]

Age(miles) Mean Life Remaining % Mean Life Remaining (New)
0 4232.15 100.
500 3732.19 88.1867
1000 3233.48 76.4027
1500 2741.53 64.7785
2000 2267.7 53.5826
2500 1827.3 43.1767
3000 1435.38 33.9162
3500 1102.38 26.0478
4000 831.772 19.6536
4500 620.286 14.6565
5000 460.07 10.8708
5500 341.344 8.0655
6000 254.516 6.01387
6500 191.356 4.52147
7000 145.371 3.43493

It may be more appropriate to replace the percentage of mean life remaining when compared to the mean life of a compo-
nent of the same age:

2-17



TableForm[Table[
{age, ConditionalMeanLifeRemaining[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
age], 100 » (ConditionalMeanLifeRemaining[
WeibullDistribution[shapeCtrGuide, scaleCtrGuide], age]) /
ConditionalMeanLife[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], age]},
{age, 0, 7000, 500}], TableHeadings - {None, {"Age(miles)", "Mean Life Remaining",
"% Mean Life Remaining (Used)"}}, TableAlignments -» Center]

Age(miles) Mean Life Remaining % Mean Life Remaining (Used)
0 4232.15 100.
500 3732.19 88.1858
1000 3233.48 76.3788
1500 2741.53 64.6354
2000 2267.7 53.1363
2500 1827.3 42.2273
3000 1435.38 32.3621
3500 1102.38 23.9524
4000 831.772 17.2146
4500 620.286 12.1143
5000 460.07 8.42608
5500 341.344 5.84359
6000 254.516 4.06932
6500 191.356 2.85974
7000 145.371 2.03448

The percentage of mean life remaining column was changed very little. Finally, we can include columns for the conditional
CDF and reliability that appeared earlier in this chapter to the table above:




TableForm[
Table[{age, ConditionalCDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], age + 500,
age], ConditionalReliability[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
age + 500, age], ConditionalMeanLifeRemaining[WeibullDigtribution|
shapeCtrGuide, scaleCtrGuide], age], 100 » (ConditionalMeanLifeRemaining][
WeibullDigtribution[shapeCtrGuide, scaleCtrGuide], age]) /
ConditionalMeanLife[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], age]},
{age, 0, 7000, 500}], TableHeadings -+ {None, {"Age(miles)", "CDF(next 500)",
"R(next 500)", "Mean Life Rem.", "% Mean Life Rem. (Used)"}},
TableAlignments - Center, TableSpacing - {1, 1.5}]

Age (miles) CDF (next 500) R(next 500) Mean Life Rem. % Mean Life Rem. (Used)

0 0.0000110958 0.999989 4232.15 100.
500 0.000380082 0.99962 3732.19 88.1858
1000 0.00274955 0.99725 3233.48 76.3788
1500 0.0105947 0.989405 2741.53 64.6354
2000 0.0292068 0.970793 2267.7 53.1363
2500 0.0652195 0.934781 1827.3 42.2273
3000 0.125414 0.874586 1435.38 32.3621
3500 0.214605 0.785395 1102.38 23.9524
4000 0.332841 0.667159 831.772 17.2146
4500 0.472955 0.527045 620.286 12.1143
5000 0.620243 0.379757 460.07 8.42608
5500 0.755832 0.244168 341.344 5.84359
6000 0.863293 0.136707 254 .516 4.06932
6500 0.935121 0.064879 191.356 2.85974
7000 0.974661 0.0253393 145.371 2.03448

Examination of the metrics in the table above reveals that at around 4,500 miles, there's a 50% chance of a failure in the next
500 miles, at that point the centerguide should be expected to last another 620 miles or so and this is only 12% of the mean
life of a centerguide of that age. One should be able to develop an interactive decision-making process for component
replacement before failure based on this collection of metrics.

Summary

In this chapter we set out to illustrate the new conditional distributions for the two-parameter Weibull distribution. We
discovered that it is difficult to obtain much insight from a PDF graph with respect to the replacement of centerguides of
various ages before failure. All of the other new functions appear to be valuable for evaluating the replacement of aging
components before failure. These functions generate metrics, such as those in the last table above, that provide a reasonable
foundation for the development of an interactive decision-making process for component replacement before failure.
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Chapter 3

Conditional Lognormal Distribution: Shock Absorber Example

Introduction

This chapter illustrates the new lognormal distribution functions for components that are of any age. The component used in
this chapter is a shock absorber, the data and analysis for which was found in the literature. This chapter may be used as an

analysis template for components that age in accordance with the two-parameter lognormal distribution and are candidates

for replacement before failure.

Lognormal Parameter Values for Shock Absorber

Meeker and Escobar (1998, Table 8.1) provide estimates for the lognormal distribution for the shock absorber data reported
in O'Connor (1985, p. 85). The log (base ¢) mean and standard deviation estimates, respectively, are:

muSA = 10.14;
sigmaSA = .5301;

These estimates will be assumed to be the true values of the parameters.

Mathematica has built-in functions for the two-parameter lognormal distribution in the standard add-on package
Statistics“ContinuousDistributions®.

Needs["Statistics “ContinuousDistributions "]
The usage message for the lognormal distribution is:

? LogNormalDistribution

LogNormalDistribution[mu, sigma] represents the log-normal distribution based
on a normal distribution having mean mu and standard deviation sigma. More...

As discussed in the previous chapter, these functions are for the unconditional probability distributions, thereby assuming
that the item is new. The new add-on package Reliability ConditionalDistributions®, provided in Appen-
dix A herein, contains more general functions for the two-parameter lognormal distribution where the components can be of
any age. Before the new functions can be used, the add-on package ConditionalDistributions must be loaded:

Needs["Reliability ConditionalDistributions™"]
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The rest of this chapter will illustrate the use of these new functions with the example component.

Conditional CDF

A plot of the CDF curve for a new shock absorber can be generated from the Condit ionalCDF function and the built-in
function Plot:

plotnew = Plot[ConditionalCDF[LogNormalDistribution[muSA, sigmaSA], t, 0],
{t, 0, 70000}, Axes » False, Frame -» True, FrameLabel -
{"t, miles", "Conditional Failure Probability", "Given Current Age 0 Miles", None},
PlotStyle - Hue[.0], PlotRange -» All];

Given Current Age 0 Miles
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Figure 3-1

Examination of the curve reveals that there is little probability of failure before 10,000 miles and failure is quite likely to
occur by 40,000 miles or so. A family of such curves with shock absorbers of various ages can be generated and plotted thus:

plot10000 = Plot[ConditionalCDF[LogNormalDistribution[muSA, sigmaSA], t, 10000],
{t, 10000, 70000}, DisplayFunction - Identity, PlotStyle -» Hue[.15]];

plot20000 = Plot[ConditionalCDF[LogNormalDistribution[muSA, sigmaSA], t, 200007,
{t, 20000, 70000}, DisplayFunction- Identity, PlotStyle -» Hue[.3]];

plot30000 = Plot[ConditionalCDF[LogNormalDistribution[musSa, sigmasSa], t, 30000],
{t, 30000, 70000}, DisplayFunction - Identity, PlotStyle -» Hue[.45]];

plot40000 = Plot [ConditionalCDF[LogNormalDistribution[muSA, sigmaSA], t, 400007,
{t, 40000, 70000}, DisplayFunction- Identity, PlotStyle -» Hue[.6]];

plot50000 = Plot[ConditionalCDF[LogNormalDigtribution[musSa, sigmasa], t, 50000],
{t, 50000, 70000}, DisplayFunction - Identity, PlotStyle -» Hue[.75]];
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plot60000 = Plot [ConditionalCDF[LogNormalDistribution[muSA, sigmaSA], t, 60000],
{t, 60000, 70000}, DisplayFunction - Identity, PlotStyle » Hue[.9]]:

Show[plotnew, plotl10000, plot20000, plot30000, plot40000, plot50000,
plot60000, FrameLabel » {"t, miles", "Conditional Failure Probability",
"Given Current Age 0,10000,20000,30000,40000,50000,60000 Miles", None},
DisplayFunction - $DisplayFunction];

Given Current Age 0,10000,20000,30000,40000,50000,60000 Miles
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Figure 3-2

The plot above shows that shock absorbers are unlikely to fail by 10,000 miles and the accumulate risk very gradually
thereafter.

The situation may arise where it will be rather inconvenient for the component to fail during the next 2,000 miles, perhaps.
This situation may arise because the system is to be deployed and is expected to undergo 2,000 miles of usage before a
maintenance pulse will occur. We can use ConditionalCDF to plot the probability of failing in next 2,000 miles as a
function of component age thus:



Plot[ConditionalCDF[LogNormalDistribution[muSA, sigmaSA], age + 2000, age],
{age, 0, 70000}, Axes -» False, Frame - True,
FrameLabel -» {"Current Mileage", "Conditional Failure Probability",
"Probability of Failure in Next 2000 miles”, None}, PlotStyle - RGBColor([0, 0, 1]];
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Figure 3-3

The plot above declines after 40,000 miles which is unrealistic. This is an unfortunate behavior of the lognormal distribu-
tion, that will be seen in the hazard function section of this chapter. We can generate a table of these values thus:

TableForm[
Table[{age, ConditionalCDF[LogNormalDistribution[muSA, sigmaSA], age + 2000, age]},
{age, 0, 70000, 5000}],
TableHeadings - {None, {"Age(miles)", "CDF (next 2000)"}}, TableAlignments -+ Center]

Age(miles) CDF (next 2000)
0 8.34545x 1077
5000 0.00652615
10000 0.0411984
15000 0.0768332
20000 0.10001¢9
25000 0.113327
30000 0.120464
35000 0.123885
40000 0.12506
45000 0.124861
50000 0.123814
55000 0.122248
60000 0.120368
65000 0.118308
70000 0.116154

There does not appear to be an obvious choice as to when shock absorbers should be replaced.
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Conditional Hazard

The next function that we will illustrate here is the conditional hazard or failure-rate function.

plotnew = Plot[ConditionalHazard[LogNormalDistribution[muSA, sigmaSA], t],
{t, 0, 70000}, DisplayFunction - Identity, PlotStyle » Hue[.0]]:

plot10000 = Plot[ConditionalHazard[LogNormalDistribution[muSA, sigmaSa], t],
{t, 10000, 70000}, DisplayFunction - Identity, PlotStyle - Hue[.15]];

plot20000 = Plot[ConditionalHazard[LogNormalDistribution[muSA, sigmaSA], t],
{t, 20000, 70000}, PisplayFunction- Identity, PlotStyle -» Hue[.3]];

plot30000 = Plot[ConditionalHazard[LogNormalDistribution[muSA, sigmasSa], t],
{t, 30000, 70000}, DisplayFunction - Identity, PlotStyle - Hue[.45]];

plot40000 = Plot[ConditionalHazard[LogNormalDistribution[muSA, sigmaSa], t},
{t, 40000, 70000}, DisplayFunction - Identity, PlotStyle - Hue[.6]];

plot50000 = Plot [ConditionalHazard[LogNormalDistribution[muSA, sigmaSA], t],
{t, 50000, 70000}, DisplayFunction - Identity, PlotStyle -» Hue[.75]];

pPlot60000 = Plot[ConditionalHazard[LogNormalDistribution[muSA, sigmaSAa], t],
{t, 60000, 70000}, DisplayFunction - Identity, PlotStyle - Hue[.9]];

Show([plotnew, plotl10000, plot20000, plot30000, plot40000, plot50000, plot60000,
Axes —» Falsge, Frame - True, FrameLabel -» {"t, miles", "Conditional Hazard",
"Given Current Age 0,10000,20000,30000,40000,50000,60000 Miles", None},
DisplayFunction - $DisplayFunction, PlotRange - All];
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The age of the component does not change the hazard function but it does remove the portion of the function to the left of
the component age. This is why the color of the curve changes every 10,000 miles. Until approximately 30,000 miles, the

hazard curve increases steadily which indicates aging. The hazard function can be viewed as the probability of failing in the
next interval of time given the component has survived up to that point in time. A new component faces little hazard for the
first several thousand miles. In contrast, the hazard curve for centerguide that has survived to 10,000 miles is quite steep.

The hazard function might be useful for evaluating when to replace components of various ages.

Conditional Quantile

The conditional quantile function is the inverse of the CDF. For example, if we want to know at what age 50% of the shock
absorbers that have already survived 10,000 miles are likely to fail, we can use the conditional quantile function:

ConditionalQuantile[LogNormalDistribution[muSa, sigmaSa], 40000, .5]

50399.3

This is often referred to as the median. This quantile just obtained can be plugged back into the conditional CDF and we
should obtain a probability of 0.5:

ConditionalCDF[LogNormalDistribution[muSA, sigmaSaA], %, 40000]

0.5

And we do. In contrast, the median life of a new shock absorber is:

ConditionalQuantile[LogNormalDistribution[muSA, sigmasa], 0, .5]

25336.5

So there is a 50% chance that a new shock absorber will survive until 25,337 miles whereas a centerguide that has survived
until 40,000 miles has a 50% chance of surviving to 50,399 miles.

It appears that the conditional quantile function may be helpful when considering the replacement of shock absorbers that
are already in service before failure.

Conditional Reliability

The next function to be examined is the conditional reliability function. The reliability function is one minus the CDF. A
plot that generates a family of reliability curves for centerguides of various ages, essentially the complement of figure 3-2, is
generated thus:

plotnew = Plot[ConditionalReliability[LogNormalDistribution[muSA, sigmaSA], t, 0],
{t, 0, 70000}, DisplayFunction -» Identity, PlotStyle -» Hue[.0]];

3-6



plotl0000 = Plot[ConditionalReliability[LogNormalbistribution[muSa, sigmasa], t, 10000],
{t, 10000, 70000}, DisplayFunction- Identity, PlotStyle -» Hue[.15]];

Plot20000 = Plot[ConditionalReliability[LogNormalDistribution[muSA, sigmaSa], t, 20000],
{t, 20000, 70000}, DisplayFunction - Identity, PlotStyle -» Hue[.3]];

plot30000 = Plot[ConditionalReliability[LogNormalDistribution[musSa, sigmaSA], t, 30000],
{t, 30000, 70000}, DisplayFunction- Identity, PlotStyle » Hue[.45]];

pPlot40000 = Plot[ConditionalReliability[LogNormalDistribution[muSA, sigmaSA], t, 40000],
{t, 40000, 70000}, DisplayFunction - Identity, PlotStyle —» Hue[.6]];

Plot50000 = Plot[ConditionalReliability[LogNormalDistribution[muSA, sigmaSA}, t, 50000],
{t, 50000, 70000}, DisplayFunction - Identity, PlotStyle -» Hue[.75]];

plot60000 = Plot[ConditionalReliability[LogNormalDistribution[muSa, sigmaSA], t, 60000],
{t, 60000, 70000}, DisplayFunction - Identity, PlotStyle » Hue[.9]];

Show[plotnew, plot10000, plot20000, plot30000,
Plot40000, plot50000, plot60000, Axes » False, Frame - True,
FrameLabel -» {"t, miles", "Conditional Survival Probability",
"Given Current Age 0,10000,20000,30000,40000,50000,60000 Miles", None},
DisplayFunction - $DisplayFunction];

Given Current Age 0,10000,20000,30000,40000,50000,60000 Miles
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Figure 3-5

From the figure above one can see that a new shock absorber is highly reliable for approximately 10,000 miles and thereaf-
ter they gradually become unreliable. We now plot the probability of surviving the next 2,000 miles as a function of age:
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Plot[ConditionalReliability[LogNormalDistribution[muSA, sigmaSA], age + 2000, age],
{age, 0, 70000}, Axes » False, Frame -» True, FrameLabel -» {"Current Mileage",
"Conditonal Survival Probability", "Survival Probability Next 2,000 miles", None},
PlotStyle -» RGBColor[0, 1, 0], PlotRange - {0, 1}};
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Figure 3-6

Inspection of figure 2-5 reveals the surprising result that after 20,000 miles or so, the probability of a shock absorber
surviving the next 2,000 miles (given that it has survived to the start of the interval) levels off at approximately 0.9. This is
due once again to the fact that the hazard function does not increase monotonically. Rather, it increases and then decreases.
A table of such values is generated thus:

TableForm|
Table[{age, ConditionalCDF[LogNormalDistribution[muSA, sigmaSA], age + 2000, age],
ConditionalReliability[LogNormalDistribution[muSA, sigmaSA], age + 2000, age]},
{age, 0, 70000, 5000}], TableHeadings -
{None, {"Age(miles)", "CDF(next 2000)", "R(next 2000)"}}, TableAlignments —» Center]

Age(miles) CDF (next 2000) R(next 2000)

0 8.34545x1077 0.999999
5000 0.00652615 0.993474
10000 0.0411984 0.958802
15000 0.0768332 0.923167
20000 0.100019 0.899981
25000 0.113327 0.886673
30000 0.120464 0.879536
35000 0.123885 0.876115
40000 0.12506 0.87494
45000 0.124861 0.875139
50000 0.123814 0.876186
55000 0.122248 0.877752
60000 0.120368 0.879632
65000 0.118308 0.881692
70000 0.116154 0.883846
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The CDF column generated in a earlier section of this chapter was also included.

Conditional PDF

Next the conditional probability density function (PDF) will be considered. A plot that generates a family of PDF curves for
shock absorbers of various ages is generated thus:

plotnew = Plot[ConditionalPDF[LogNormalDistribution[muSa, sigmasa], t, 0],
{t, 0, 70000}, DisplayFunction - Identity, PlotStyle -» Hue[.0]];

plot10000 = Plot[ConditionalPDF[LogNormalDistribution[muSA, sigmaSA], t, 10000],
{t, 10000, 70000}, DisplayFunction - Identity, PlotStyle -» Hue[ .15]11];

plot20000 = Plot[ConditionalPDF[LogNormalDistribution[muSA, sigmaSA], t, 20000],
{t, 20000, 70000}, DisplayFunction - Identity, PlotStyle - Hue[.3]];

plot30000 = Plot[ConditionalPDF[LogNormalDistribution[muSA, sigmaSA], t, 30000},
{t, 30000, 70000}, DisplayFunction- Identity, PlotStyle -» Hue[.45]];

plot40000 = Plot[ConditionalPDF|[LogNormalDistribution[muSA, sigmaSA], t, 40000],
{t, 40000, 70000}, DisplayFunction - Identity, PlotStyle -» Hue[.6]];

Plot50000 = Plot [ConditionalPDF[LogNormalDistribution[muSA, sigmaSA], t, 50000],
{t, 50000, 70000}, DisplayFunction- Identity, PlotStyle -» Hue[.75]];

plot60000 = Plot[ConditionalPDF[LogNormalDistribution[muSA, sigmaSa], t, 60000],
{t, 60000, 70000}, DisplayFunction - Identity, PlotStyle -» Hue[.9]];
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Show[plotnew,plothOOO,plotzoooo,plot30000,plot40000,plot50000,plotSOOOO,
Axes - False, Frame - True, FrameLabel -» {"t, miles", "Conditional PDF",
"Given Current Age 0,10000,20000,30000,40000,50000,60000 Miles", None},
DisplayFunction - $DisplayFunction];

Given Current Age 0,10000,20000,30000,40000,50000,60000 Miles
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Figure 3-7

The curve that starts at zero on the mileage axis corresponds to a new shock absorber. The further to the right the curve
starts, the older the component is. Figure 3-6 shows that shock absorbers that are older have increased probability density.
The PDF is essentially re-scaled by component age so that the area beneath it equals one. It is difficult, however, to obtain
any specific quantitative insight concerning when to replace shock absorbers of various ages.

Conditional Mean Life

The next function to be considered is the conditional mean life. We can generate a graph of the conditional mean life of the
track centerguide as a function of its age thus:
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Plot[ConditionalMeanLife[LogNormalDistribution[muSa, sigmaSA], age],
{age, 0, 70000}, PlotRange -» All, Axes -» False, Frame - True, FrameLabel -
{"age,miles", "Mean Life", StringForm["Lognormal Log Mean = ~~, Std Dev = ~"w,
muSA, sigmaSA], None}, PlotStyle - RGBColor[.5, 0, .5]];

Lognormal Log Mean = 10.147, Std Dev = 0.5301°
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Figure 3-8

One insight from the graph above is that once a shock absorber has survived for approximately 20,000 miles, it can thereaf-
ter be expected to last another 15,000 miles regardless of age. This is an unfortunate behavior of the lognormal distribution
and should not be relied upon after the hazard function begins declining at 30,000 miles.

Next, let us tabulate values of shock absorber mean life.

TableForm[Table[{age, ConditionalMeanLife[LogNormalDistribution[muSA, sigmaSA], age]},
{age, 0, 70000, 5000}],
TableHeadings -» {None, {"Age(miles)", "Mean Life (miles)"}}, TableAlignments - Center]

Age (miles) Mean Life (miles)

0 29158.5
5000 29185.9
10000 30025.4
15000 32530.4
20000 36240.3
25000 40626.3
30000 45390.3
35000 50375.7
40000 55497.7
45000 60707.7
50000 65976.5
55000 71285.5
60000 76622.7
65000 81980.
70000 87351.8



The table confirms the insights obtained from the graph. While the mean life function was interesting, the mean life remain-
ing function may offer additional insight.

Conditional Mean Life Remaining

The final new function to be considered in this chapter is the conditional mean life remaining function. We can plot the
mean life remaining for the shock absorber thus:

Plot[ConditionalMeanLifeRemaining[LogNormalDistribution[muSA, sigmaSA], age],
{age, 0, 70000}, Axes -» False, Frame - True,
FrameLabel -» {"age,miles", "Mean Life Remaining",

StringForm["Lognormal Log Mean = + Std Dev = """, muSA, sigmaSa], None},
PlotStyle -» RGBColor[.5, 0, .5], PlotRange - {0, 30000}];

Lognormal Log Mean = 10.14%, Std Dev = 0.5301°
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25000 ¢
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Figure 3-9

Examination of the graph above reveals that the expected life remaining decreases until approximately 30,000 miles,
thereafter it actually increases steadily. This is once again due to unfortunate behavior of the hazard function which begins
to decline at this point. The mean life remaining curve should not be relied upon after 30,000 miles or so.

Tabulated mean life remaining values are generated as follows:
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TableForm|[
Table[{age, ConditionalMeanLifeRemaining[LogNormalDistribution[muSA, sigmaSA], age] },
{age, 0, 70000, 5000}], TableHeadings -
{None, {"Age(miles)", "Mean Life Remaining(miles)"}}, TableAlignments - Center]

Age (miles) Mean Life Remaining(miles)

0 29158.5
5000 24185.9
10000 20025.4
15000 17530.4
20000 16240.3
25000 15626.3
30000 15390.3
35000 15375.7
40000 15497.7
45000 15707.7
50000 15976.5
55000 16285.5
60000 16622.7
65000 16980.
70000 17351.8

Perhaps it would be helpful to generate a table with columns for mean life remaining and percentage of mean life remaining
compared to the mean life of a new centerguide:

TableForm|[
Table[{age, ConditionalMeanLifeRemaining|[LogNormalDistribution[musSa, sigmaSA], age],
100 * (ConditionalMeanlLifeRemaining[LogNormalDistribution[muSA, sigmaSA), age]) /
ConditionalMeanLife[LogNormalDistribution[muSa, sigmaSa], 0]},
{age, 0, 70000, 5000}], TableHeadings -» {None, {"Age(miles)", "Mean Life Remaining®,
"% Mean Life Remaining (New)"}}, TableAlignments -» Center]

Age (miles) Mean Life Remaining % Mean Life Remaining (New)
0 29158.5 100.
5000 24185.9 82.9462
10000 20025.4 68.6775
15000 17530.4 60.1211
20000 16240.3 55.6965
25000 15626.3 53.5909
30000 15390.3 52.7814
35000 15375.7 52.7314
40000 15497.7 53.1499
45000 15707.7 53.8701
50000 15876.5 54.7917
55000 16285.5 55.8514
60000 16622.7 57.008
65000 16980. 58.2334
70000 17351.8 59.5084

It may be more appropriate to replace the percentage of mean life remaining when compared to the mean life of a compo-
nent of the same age:
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TableForm|[

Table[{age, ConditionalMeanLifeRemaining[LogNormalDistribution[muSA, sigmaSa], age],
100 » (ConditionalMeanLifeRemaining[LogNormalDistribution[muSa, sigmaSA], age]) /

ConditionalMeanLife[LogNormalDistribution[muSA, sigmaSA], age]},
{age, 0, 70000, 5000}]), TableHeadings » {None, {"Age(miles)", "Mean Life Remaining",
"% Mean Life Remaining (Used)"}}, TableAlignments - Center]

Age(miles)
0
5000
10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000

Mean Life Remaining

29158.
24185.
20025.
17530.
16240.
15626.
15390.
15375.
15497.
15707.
15976.
16285.
16622.

5

N U9 W W W Y

16980.

17351.

% Mean Life Remaining (Used)
100.

82.
66.
53.
44.
38.
33.
30.

27

25.
24.
22.
21.
20.
19.

8684
6948
8893
8128
4635
9065
5221

.925

8744
2154
8454
6942
7124
8643

The percentage of mean life remaining column was changed very little. Finally, we can include columns for the conditional
CDF and reliability that appeared earlier in this chapter to the table above:

TableForm|[

Table[{age, ConditionalCDF[LogNormalDistribution[muSA, sigmaSa], age + 2000, age],
ConditionalReliability[LogNormalDistribution[muSA, sigmaSA], age + 2000, age],

ConditionalMeanLifeRemaining[LogNormalDistribution[muSA, sigmaSA], age],
100 » (ConditionalMeanLifeRemaining[LogNormalDistribution[muSA, sigmaSa], age]) /

ConditionalMeanLife[LogNormalDistribution[muSA, sigmaSa], age]},
{age, 0, 70000, 5000}], TableHeadings » {None, {"Age(miles)", "CDF (next 2K)",

"R(next 2K)", "Mean Life Remain.", "% Mean Life Remain.

TableAlignments -» Center, TableSpacing - {1, 1.5}]

Age(miles)
0
5000
10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000

CDF (next 2K)
8.34545x 1077
0.00652615
0.0411984
0.0768332

o O O o

O O O O o o

.100019
.113327
.120464
.123885
.12506
.124861
.123814
.122248
.120368
.118308
.116154

R

O O O O o o

(next 2K)
0.999999
0.993474
0.958802
0.
0
0
0
0

923167

.899981
.886673
.879536
.876115
0.
.875139
.876186
.877752
.879632
.881692
.883846

87494

Mean Life Remain.
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Examination of the table above reveals that the metrics change little after around 30,000 miles. The metrics should not be
relied upon after that point because the hazard function begins to decline which is not consistent with the likely failure
phenomena for shock absorbers. Clearly shock absorbers do not improve with age after 30,000 miles.

Let us consider the metrics from 0 to 30,000 miles. For failure-avoidance intervals of 2,000 miles, it is highly likely that a
shock absorber that has survived to the start of the interval will survive until the end of the interval. It does not appear that
this shock absorber would be a promising candidate for replacement before failure-avoidance periods of 2,000 miles or less.

Summary

In this chapter we set out to illustrate the new conditional distributions for the two-parameter lognormal distribution. We
discovered that it is difficult to obtain much insight from a PDF graph with respect to the replacement of shock absorbers of
various ages before failure. All of the other new functions appear to be valuable for evaluating the replacement of aging
components before failure. These functions generate metrics, such as those in the last table above, that provide a reasonable
foundation for the development of an interactive decision-making process for component replacement before failure.

Even though the shock absorber modeled in this chapter with a lognormal distribution is clearly subject to aging, it does not
appear to be a good candidate for replacement before for failure-avoidance intervals of 2,000 miles or less.
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Chapter 4

Combined Example of Conditional Weibull and Lognormal
Distributions with Multiple Components

Introduction

Chapters 3 and 4 illustrated the new functions for the Weibull and lognormal distributions, respectively, for a single compo-
nent of any age. In this chapter, a small but mixed group of components will be considered. This will help us visualize the
information that could be available to an operator or maintainer of a piece of equipment that had such models embedded in
on-board software.

Parameter Values for Components

The Weibull shape and scale parameters, respectively, for the track centerguide illustrated in Chapter 2 are:
shapeCtrGuide = 5.14;
scaleCtrGuide = 4602;

The lognormal log (base €) mean and standard deviation parameters, respectively, for the shock absorber illustrated in
Chapter 3 are:

muSA = 10.14;
sigmaSA = .5301;

Weibull shape and scale parameters for an IDT 96 ball grid array microelectronic device that AMSAA analyzed test data for
are:

shapeBGA = 9.52;

scaleBGA = 5678;

In all cases, estimates will be treated as the true values of the parameters.

Before the new functions can be used, the add-on package Reliability ConditionalDistributions™ must be
loaded:

Needs["Reliability ConditionalDistributions "]
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Let us also load the standard add-on package Graphics~Legend™ which will allow us to add legends to plots:

Needs["Graphics “Legend™"]

Pre-Deployment Failure Probabilities

First let us assume that the components are all new and plot their cumulative distribution functions (CDF):

Plot[{ConditionalCDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide], t, 0],
ConditionalCDF[LogNormalDistribution[muSA, sigmasSa], t, 0],
ConditionalCDF[WeibullDistribution[shapeBGA, scaleBGA], t, 0]},

{t, 0, 15000}, Axes » False, Frame - True, FrameLabel » {"t, miles",
"Conditional Failure Probability", "Assuming All Components New", None},

PlotStyle - {Hue[.0], Hue[.2], Hue[.4]}, PlotRange - All,

PlotLegend -+ {"CtrGuide", "SA", "BGA"}, LegendPosition- {.95, -.4}];

Assuming All Components New
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Figure 4-1

The graph above shows that if all of the components were new, the centerguide would be the first component to fail, fol-
lowed closely by the BGA. The shock absorber would be of concern much later.

Generally, components will not all be new. Let us assume that at present, the components are installed on a vehicle whose
odometer reads 50,000 miles.

odometerCurrent = 50000;

Let us further assume that there are twelve centerguides, four were installed at 46,000 miles, four more were installed at
47,000 miles and the final four were installed at 48,000 miles.

installCGlst4 = 46000;

installCG2nd4 = 47000;
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installCG3rd4 = 48000;

Let us assume that there are four shock absorbers and they are all original to the vehicle.
installSa4 = 0;

Finally, let us assume that there is one BGA and it was installed at 46,000 miles.
installBGA = 46000;

Let us assume that the vehicle will soon be deployed and it is important to avoid failures for the next 2,000 miles since the
logistics footprint will be heavily constrained. We can plot the failure probabilities for these components for the deployment
thus:

Plot[{ConditionalCDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
odometer - installCGlst4, odometerCurrent - installCGlst4],
ConditionalCDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
odometer - installCG2nd4, odometerCurrent - installCG2nd4],
ConditionalCDF|[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
odometer - installCG3rd4, odometerCurrent - installCG3rd4],
ConditionalCDF[LogNormalDistribution[muSA, sigmaSa],
odometer - installSA4, odometerCurrent - installSad],
ConditionalCDF[WeibullDistribution[shapeBGA, scaleBGA}],
odometer - installBGA, odometerCurrent - installBGA]},
{odometer, odometerCurrent, odometerCurrent + 2000}, Axes -» False, Frame - True,
FrameLabel -+ {"t, miles", "Conditional Failure Probability",
"Given Current Ages for All Components", None},
PlotStyle— {Hue[.0], Hue[.2], Hue[.4], Hue[.6], Hue[.8]}, PlotRange - All,
PlotLegend -» {"CGlst4", "CG2nd4", "CG3rd4", "SA", "BGA"}, LegendPosition -+ {-9, -.4}];

Given Current Ages for All Components

>
E]

-rd

408

9 —— CGlst4
Q

o

M

“o.6f CG2nd4
[

N

a

- ——— CG3rd4
£o.af

q —— s

g

(]

0.2}

-

kel

=)

QO

&)

50000 50500 51000 51500 52000

t, miles
Figure 4-2

4-3




Examination of the plot above reveals that the first four centerguides are the greatest concern are virtually certain to fail
during the deployment and the second four centerguides and the BGA are highly likely to fail. The last group of center-
guides has approximately 40% chance of failing. We can generate a ranked table of these deployment failure probabilities as
follows:

TableForm[Sort[tbl = Transpose[{{"CtrGuidelst4 (Each)", "CtrGuide2nd4 (Each)",
"CtrGuide3rd4 (Each)", "Shock Absorbers (Each)", "BGA"},
{ConditionalCDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
odometer - installCGlst4, odometerCurrent - installCGlst4],
ConditionalCDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
odometer - ingtallCG2nd4, odometerCurrent - installCG2nd4],
ConditionalCDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
odometer - ingtallCG3rd4, odometerCurrent - installCG3rd4],
ConditionalCDF[LogNormalDistribution[muSa, sigmaSa],
odometer - installSA4, odometerCurrent - installSa4],
ConditionalCDF[WeibullDistribution[shapeBGA, scaleBGA],
odometer - installBGA, odometerCurrent - installBGA]} /. odometer -» 52000}],
(#1[[2]] > #2[[2]]) &], TableHeadings -» {None, {"COMPONENT", "FAIL PROB"}}]

COMPONENT FAIL PROB
CtrGuidelst4 (Each) 0.967396
BGA 0.808919
CtrGuide2nd4 (Each) 0.758472
CtrGuide3rd4 (Each) 0.376658
Shock Absorbers (Each) 0.123814

It would probably be best to replace the first and second groups of centerguides as well as the BGA. Each of the center-
guides in the third group has a 38% of failing so the probability that at least one of these will fail is (assuming shock absorb-
ers fail independently):

1- (1-ConditionalCDF[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
odometer - installCG3rd4, odometerCurrent - installCG3rd4] /. odometer - 52000)*

0.849024

It would probably be advisable to replace this group of centerguides as well.

Each of the shock absorbers has a 12% chance of failure. Since there are four shock absorbers, the probability that at least
one will fail during the deployment (again assuming they fail independently) is:

1-(1-ConditionalCDF|[LogNormalDistribution[muSA, sigmasSa],
odometer - installSA4, odometerCurrent - installSA4] /. odometer -» 52000)*

0.410634

It may or may not be advisable to replace the shock absorbers as well.



Inclusion of Conditional Mean Life Remaining

It will be helpful to add columns to the table above for conditional mean life remaining and percent of mean life remaining.
The values for the conditional mean life remaining column are generated thus.

mlr = {ConditionalMeanLifeRemaining[
WeibullDistribution[shapeCtrGuide, scaleCtrGuide], odometerCurrent - installCGlst4],
ConditionalMeanLifeRemaining[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
odometerCurrent - installCG2nd4], ConditionalMeanLifeRemaining[
Weibullbistribution[shapeCtrGuide, scaleCtrGuide], odometerCurrent - installCG3rd4],
ConditionalMeanLifeRemaining[LogNormalDistribution[muSA, sigmaSA],
odometerCurrent - installSa4], ConditionalMeanLifeRemaining]
WeibullDistribution[shapeBGA, scaleBGA], odometerCurrent - installBGA]}

{831.772, 1435.38, 2267.7, 15976.5, 1454.66}

The values for the percent of mean life remaining column are generated thus.

mlrpercent =
100 * {ConditionalMeanlLifeRemaining[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
odometerCurrent - installCGlst4] / ConditionalMeanLife[WeibullDistribution]|
shapeCtrGuide, scaleCtrGuide], odometerCurrent - installCGlst4],
ConditionalMeanLifeRemaining[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
odometerCurrent - installCG2nd4] / ConditionalMeanlife[WeibullDistribution]
shapeCtrGuide, scaleCtrGuide], odometerCurrent - installCG2nd4],
ConditionalMeanLifeRemaining[WeibullDistribution[shapeCtrGuide, scaleCtrGuide],
odometerCurrent - installCG3rd4] / ConditionalMeanLi fe[WeibullDistribution]
shapeCtrGuide, scaleCtrGuide], odometerCurrent -~ installCG3rd4],
ConditionalMeanLifeRemaining[LogNormalbistribution[muSA, sigmaSA],
odometerCurrent - installSA4] / ConditionalMeanLife[
LogNormalDistribution[muSA, sigmaSA], odometerCurrent - installSA4],
ConditionalMeanLifeRemaining[WeibullDistribution[shapeBGa, scaleBGA],
odometerCurrent - installBGA] / ConditionalMeanLifel
WeibullDistribution[shapeBGA, scaleBGA], odometerCurrent - installBGA]}

{17.2146, 32.3621, 53.1363, 24.2154, 26.6682}

The new columns are added to the table thus:
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TableForm[Sort[Transpose[Join[Transpose[tbl], {mlr}, {mlrpercent}]],

(#1[[2]] > #2[[2]]) &]., TableHeadings - {None,

{"COMPONENT", "FAIL PROB", "MEAN LIFE REMAINING", "% MEAN LIFE REMAINING (USED) "}},
TableAlignments -» Center, TableSpacing - {1, 1.5}]

COMPONENT FAIL PROB MEAN LIFE REMAINING % MEAN LIFE REMAINING (USED)
CtrGuidelst4 (Each) 0.967396 831.772 17.2146
BGA 0.808919 1454.66 26.6682
CtrGuide2nd4 (Each) 0.758472 1435.38 32.3621
CtrGuide3rd4 (Each) 0.376658 2267.7 53.1363
Shock Absorbers (Each) 0.123814 15976.5 24.2154

The components are still ranked by failure probability. This table shows that the top three components have expected lives
shorter than the failure-avoidance period. The shock absorbers have approximately 16,000 miles of expected remaining life
so this would weigh against replacing them at this time.

Implementation in On-Board Software

Figure 4-3 depicts how the example in this chapter might look to an operator or maintainer.

Potential Implementation on Vehicles

12000 miles
Comp 3{GG3]
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Figure 4-3

In order to embedding the prognostics approach developed in this report on-board a system, the following elements need to
be addressed:

Software:

* Models, model parameters and their mapping to components currently installed on the system.

* This needs to be started during design and updated as components or vendors change and as additional data
becomes available

* Algorithms/lookup tables for distribution functions not available in closed-form (e.g., lognormal CDF and Weibull

4-6
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mean life remaining).

Sensors:
* Age (miles, hours, as appropriate) of each currently-installed component covered.

User/Maintainer Input:
* Length of failure-avoidance period.

* Selection of type of results desired.

Results:

* Tables that rank components with respect to various metrics:
* Probability of failure in next _miles/hours.

* Mean life remaining.

* % of mean life remaining.

* Optimal replacement time.

* Green-yellow-red color coding of components.
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Chapter 5

Summary and Areas for Follow-on Work

This report documents the development and notional application of a new tool for developing component replacement-be-
fore-failure rules for systems of any age that are preparing for a period during which failures must be zealously avoided. The
tool, which is an extension of Mathematica, generates graphs and tables for a variety of metrics that one should use in
decision-making process. Chapters 2 and 3 illustrated use of the new functions on components whose reliability is modeled
with the Weibull and lognormal distributions, respectively. Chapter 4 illustrated use of the new tool when analyzing and
ranking replacement-before-failure rules for a collection of components. These chapters constitute a basic set of electronic
templates for applying the new tool. A palette of buttons for the new functions was also developed to supplement the
Mathematica graphical user interface.

Two areas were identified where further work is needed:

1. In this report, a tool was developed that generates several metrics useful for making decisions with respect to
replacing components before failure. Additional work is needed in order to develop an interactive decision-making process
fed by these metrics. The process should be appropriate for use by the designers, logisticians and evaluators formulating and
evaluating the replace-before-failure rules. Ultimately, the tool should be extended to include the interactive decision-mak-
ing process. The process should also be appropriate for embedding in on-board software that will be used by the operators
and maintainers. Figure 4-3 depicts what the on-board display might look like. Elements that need to be addressed in order
to implement this approach in on-board software are listed at the end of Chapter 4.

2. One potential follow-on task is to implement the tool in a series of webMathematica pages. This would make the
tool more user-friendly and more readily available to users because it would be available over the internet. Anyone with
access to the web could use the tool. The user would not have to understand the math behind the functions they desire to use.
They would be able to enter in specific parameters for their problem, and then perform a complicated calculation and
generate graphs and tables by clicking a button. webMathematica could facilitate the use of this tool by both developers and
evaluators. Figure 5-1 depicts an example webMathematicapage. It could be used to generate the graph that appeared in
Figure 2-3. The user would select the desired function from the list at the lower left. In this case, the user would then select
the distribution and provide parameters, interval length and plotting range. The desired graph is then generated by the push
of a button. The graph (or other result) can be saved to the user’s PC, printed or emailed.
webMathematicacode needs to be developed in order to connect web pages such as that depicted above to the tool.
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Appendix A

Conditional Distribution Functions

This notebook contains functions for the conditional Weibull and lognormal distributions thereby extend-
ing the standard add-on package Statistics ‘ContinuousDistributions".

Reference

Title

Conditional Distribution Functions

Author

Michael J. Cushing, Ph.D. and Kristin R. Stanley

Summary

This notebook contains functions for the conditional Weibull and lognormal distributions thereby extend-
ing the standard add-on package Statistics ‘ContinuousDistributions".

Copyright

Not copyrighted.

Notebook Version

1.0

Mathematica Version

5.0




History

Version 0.1.0, Jul 2003, was the initial version and it inchaded most but not all of the Weibull functions.
It was used to generate plots and tables for the 29 Jul 2003 briefing to AEC.

Version 0.5.0, 22 Sep 2003, included all of the Weibull and lognormal functions. It was used to generate
the annotated briefings given to the ACS PMO on 30 Sep 2003 and the Director of the Army Evaluation
Center on 10 Oct 2003.

Version 1.0, 14 Oct 2003, is functionally identical to version 0.5. Only text cells were modified.

Keywords

reliability, conditional reliability, conditional Weibull distribution, conditional lognormal distribution

Source

Nelson, W., Applied Life Data Analysis, pp. 56-71, John Wiley & Sons, 1982.

Warnings

Note: all cells marked as "InitializationCell" will bé written to the Auto-Save package. This package can
then be read in proérams that use it with
Needs ["Reliability ConditionalDistributions~"]. Cells not intended to belong to the
package do not have this property.

Limitation

None known at this time.

Discussion

Not applicable.

Requirements

Statistics ContinuousDistributions"

Interface

This part declares the publicly visible functions, options, and values.
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s Set up the package context, including public imports

BeginPackage {"Reliability~ConditionalDistributions™",
"Statistics“ContinuousDistributions™",

"Statistics“NormalDistribution™",

"Statistics DescriptiveStatistics™","Statistics Common DistributionsComm
on“n]

s Usage messages for the exported functions and the context itself

The usage message for the package:

ConditionalDistributions::usage = "ConditionalDistributions.m (version
1.0) is a package that contains conditional distributions for the
Weibull and lognormal distributions thereby supplementing many of the
Weibull and lognormal functions in the standard add-on package
Statistics ContinuousDistributions."

The usage messages for the new functions:

ConditionalCDF::usage = "ConditionalCDF[distribution, t, tprime] gives
the probability using the specified distribution that an item which has
reached the age tprime will fail by time t."

ConditionalReliability::usage = "ConditionalReliability[distribution,
t, tprime] gives the probability using the specified distribution that
an item which has reached the age tprime will survive to time t."

ConditionalQuantile::usage = "ConditionalQuantile[distribution, tprime,
ql gives the qth quantile using the specified distribution for an item
that has survived to age tprime."

ConditionalPDF::usage = "ConditionalPDF[distribution, t, tprime] gives
the probability density function evaluated at t for an item which has
reached the age tprime using the specified distribution.®

ConditionalHazard::usage = "ConditionalHazard[distribution, t] gives
the hazard function evaluated at t for an item using the specified
distribution. The conditional hazard is uneffected by the age of the
item"

ConditionalMeanLife::usage = "ConditionalMeanLife[distribution, tprime]
gives the conditional mean age at failure for an item which has reached
the age tprime using the specified distribution."




ConditionalMeanLifeRemaining::usage =
"ConditionalMeanLifeRemaining[distribution, tprime] gives the
conditional mean life remaining at failure for an item which has
reached the age tprime using the specified distribution.®

Error messages for the exported objects

Error trapping and messages have not been incorporated yet.

Implementation

This part contains the actual definitions and any auxiliary functions that should not be visible outside.

Begin the private context (implementation part)

Begin["“Private™"]

Read in any hidden imports

None.

Unprotect any system functions for which definitions will be made

We must unprotect the Weibull and lognormal definitions contained in the standard add-on package
ContinuousDistributions.m before we can supplement them.

protected = Unprotect[ WeibullDistribution, LogNormalDistribution ]

Definition of auxiliary functions and local (static) variables

None.

Definition of the exported functions

Conditional Weibull CDF

Equation 9.44 from Nelson.

WeibullDistribution /: ConditionalCDF [WeibullDistribution[shape ,
scale ],
t_, tprime ] /; t >= tprime :=
1 - E"((tprime/scale) “shape - (t/scale)“shape)



Conditional Weibull Reliability
Equation 9.45 from Nelson.
WeibullDistribution /:
ConditionalReliability[WeibullDistribution[shape_ , scale 1, t_,
tprime ] /;
t >= tprime := E* ((tprime/scale)“shape - (t/scale)“shape)
Conditional Weibull Quantile
Equation 9.46 from Nelson.
WeibullDistribution /: ConditionalQuantile[WeibullDistribution[shape_,
scale ], tprime , q ] := ‘
scale*Log[l/(1 - (1 - (1 - q)*Bxpl-(tprime/scale)“shape]))]” (1/shape)

Conditional Weibull PDF

Equation 9.47 from Nelson.

WeibullDistribution /: ConditionalPDF[WeibullDistribution[shape ,
scale ], :
t_, tprime ] /; t >= tprime :=
((shape*t” (shape - 1))*E”((tprime/scale)”“shape - (t/scale)”“shape))/
scale”shape

Conditional Weibull Mean Life
Equation 9.48 from Nelson.
WeibullDistribution /: Condi tionahbdeannife [WeibullDistribution[shape ,
(

scale ], tprime ] := scale*E"|(tprime/scale) “shape*
(Gamma [l + 1/shape] - Gamma[l + 1/shape, 0, (tprime/scale)“shape])

Conditional Weibull Mean Life Remaining

Equation 9.48 from Nelson.

WeibullDistribution /: ConditionalMeanLifeRemaining [
WeibullDistribution[shape_, scale_], tprime ] :=
scale*E” (tprime/scale) “shape* ( [1 + 1/shape] -

Gamma [l + 1/shape, 0, (tprime/scale)“shape]) - tprime




Conditional Weibull Hazard

Equation 4.1 from Nelson, p. 39. This is the unconditional Weibull hazard finction. The conditional

hazard function is always the same as the unconditional.

WeibullDistribution /: ConditionalHazard[WeibullDistribution [shape ,
scale ],
t 1 := (shape/scale)*(t/scale)”(shape - 1)

Conditional LogNormal CDF

Equation 9.2 from Nelson.

LogNormalDistribution /: ConditionalCDF [LogNormalDistribution[mu ,
sigma ],
t_, tprime ] /; t >= tprime :=
(CDF [LogNormalDistribution[mu, sigmal, t] -
CDF [LogNormalDistribution[mu, sigmal, tprime])/
(1 - CDF[LogNormalDistribution[mu, sigmal], tprime])

Conditional LogNormal Reliability

Equation 9.3 from Nelson.

LogNormalDistribution /:
ConditionalReliability[LogNormalDistribution[mu_, sigma 1, t_,
tprime ] /;
t >= tprime := 1 - (CDF[LogNormalDistribution[mu, sigmal, t] -
CDF [LogNormalDistribution[mu, sigmal, tprimel)/
(1 - CDFlLogNormalDistribution[mu, sigmal, tprime])

Conditional LogNormal Quantile

Equation 9.4 from Nelson.

q = (CDF[LogNormalDistribution[mu, sigma], tq] -
CDF [LogNormalDistribution[mu, sigma], tprime]) /
(1 - CDF[LogNormalDistribution[mu, sigma], tprime])

2 sigma 2 /2 sigma

+1 (—1—Erf[-——ﬂ—L~i‘m“+\}4228itg;:me 1)

1 (_1_Erf[—_m‘ﬂugej_tm]_]) + 1 (1 +Brf [ mutesleq] 1)
g ==
1

Using Solve to get a solution for #g:




Solve[%, tq]

— Solve::ifun :
Inverse functionsg are being used by Solve, so some solutions may not be found.

{ {tq 5 emu+\/7 sigma InverseErf[o,q+Erf[%—"':ﬁﬁg%L ]-aBrf| ;“%-"2"95;::—“]-] ] } }

Extracting the solution:

tq /. First[First[%]]

emu+\/2_ sigma InverseErf[0,q+Erf| W] -q Erf| W] ]
Defining the function with this solution:

LogNormalDistribution /: ConditionalQuantile[LogNormalDistribution [mu_,
sigma ], tprime , q ] :=
E” (mu + Sqrt[2]*sigma*InverseEzf [0,
q + Erf[(-mu + Logltprime])// (Sqrt[2] *sigma)] -
q*Erf [(-mu + Log([tprime])/(Sqrt[2]*sigma)l])

Conditional LogNormal PDF
Equation 9.1 from Nelson.
LogNormalDistribution /: ConditionalPDF [LogNormalDistribution [mu ,
sigma ],
t_, tprime ] /; t >= tprime := PDF[LogNormalDistribution [mu,

sigmal, t]/
(1 - CDFlLogNormalDistribution[mu, sigmal, tprime])

Conditional LogNormal Mean Life

Equation 9.6 from Nelson:




Integrate[t PDF[LogNormalDistribution[mu, sigma], t],
{t, tprime, »}, Assumptions - tprime 2 0] /
(1 - CDF[LogNormalDistribution[mu, sigma], tprime])

1 : 2
A = (mu + sigma‘)
_—1—2- Sigma + —l-‘? Sigma Erf[ Blgmaz ] -
sigma sigma V2

: 2 . 2 .
Erf[mu+51gma +E:rf[mu+s1g'ma Log[tprime] ]J]/

i 2
{emu+ Sigma

\/? sigma \/? sigma

)

[2 (1 . x (—1 ~Erg[ T Log [tprime] ]
2 \/2 sigma

Defining the function with this solution:

LogNormalDistribution /: ConditionalMeanLife [LogNormalDistribution [mu_,
sigma_]1, tprime ] := (E"(mu + sigma”2/2)*(Sqrt[l/sigma”2] *sigma +
Sqrt[l1/sigma*2] *sigma*Erf [ (Sqrt[l/sigma”2] * (mu +
sigma”2)) /Sqrt[2]] -
Erf[(mu + sigma®2)/(Sqrtl2]*sigma)] +
Erf[(mu + sigma®2 - Logltprime])/(Sqrtl[2]*sigma)]l))/
(2%(1 + (1/2)*(-1 - Erfl[(-mu + Logltprime])/(Sqrt([2]*sigma)l)))

Conditional LogNormal Mean Life Remaining

This is the same as the ConditionalMeanLifeRemaining function except that tprime is subtracted

from it.

LogNormalDistribution /: ConditionalMeanLifeRemaining|
LogNormalDistribution[mu , sigma ], tprime ] :=
(E” (mu + sigma”2/2)*(Sqrt[l/sigma”2]*sigma + Sqrt[1l/sigma’2]*sigma*
Erf[(Sqrt[l/sigma®2] * (mu + sigma*2))/Sqrt[2]] -
Erf[(mu + sigma®2)/(Sqrtl[2] *sigma)] + Erf[(mu + sigma”2 -
Log[tprime]) /
(Sqrt[2] *sigma)l))/

(2%(1 + (1/2)*(-1 - Erf[(-mu + Log[tprimel)/(Sqrt[2]*sigma)]))) -
tprime

Conditional LogNormal Hazard
Equation 1.23 from Nelson. This is the unconditional hazard function. The conditional hazard function is

always the same as the unconditional.

LogNormalDistribution /: ConditionalHazard[LogNormalDistribution[mu |,
sigma 1, t_] := PDF[LogNormalDistribution[mu, sigma], tl/
(1 - CDFlLogNormalDistribution[mu, sigmal, t])
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s Definitions for system functions

None.

® Restore protection of system symbols

Protect[ Evaluate[protected] ]

a End the private context

End[ }

Epilog

This section protects exported symbols and ends the package.

= Protect exported symbol

ConditionalReliability, ConditionalQuantile, ConditionalPDF,

Protect[ ConditionalDistributions, ConditionalCDF,
ConditionalBazard, Conditionalueai

Life, ConditionalMeanLifeRemaining ]

a End the package context

EndPackage[ ]
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Appendix B

Conditional Distributions Palette for Mathematica
Graphical User Interface

First the Reliability ConditionalDistributions ™ package is loaded:
Needs["Reliability ConditionalDistributions™"]
The current version of the package is:

? ConditionalDistributions

ConditicnalDistributions.m (version 1.0) is a package that contains
conditional distributions for the Weibull and lognormal distributions
thereby supplementing many of the Weibull and lognormal functions
in the standard add-on package Statistics ContinuousDistributions.

Here is the palette:

ConditionalCDF[WeibullDistribution[m, m], u, u]

ConditionalReliability[WeibullDistribution[m, m], m, ]

ConditionalQuantile[WeibullDistribution[m, m], =, m]

ConditionalPDF[WeibullDistribution[m, u], m, u]

ConditionalMeanLife[WeibullDistribution[m, =], m]

ConditionalMeanLifeRemaining[WeiibullDistribution[l, u], m]

ConditionalHazard[Weibullbistribution[m, ], u]

ConditionalCDF[LogNormalDiétribution[l, m], m, m]

ConditionalReliability[LogNom}alDistribution[l, m], =, u]

ConditionalQuantile[LogNormaiDistribution[l, ], u, m]

ConditionalPDF[LogNormalDigtribution[m, u], =, m]

ConditionalMeanLife[LogNormalDistribution[m, m], u]

ConditionalMeanLi feRemaining[LogNomalDistribution[l , 2], mj

ConditionalHazard[LogNormalDistribution{m, m], m]
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Appendix C

Installation Instructions for New Tool

Before installing the new tool, a bit of set up is required. First, one needs to create a directory named
Reliability directly under the ExtraPackages directory which in turn appears within the Add-
Ons directory. The ConditionalDistributions package, both the notebook (.nb) and executable
(.m) files (provided as Appendix A herein), must be copied there.

A palette was developed for the tool and the files that generated the palette are provided as Appendix B.
The palette is a Mathematica notebook named ConditionalDistributionsPalette.nb. The
palette should be copied to the Palettes directory which appears in the FrontEnd directory within
the SystemFiles directory. When Mathematica is subsequently started, the new palette will be listed
in the Palette menu. (The Palette menu appears under File on the Mathematica toolbar.) Before

using the palette, the Reliability ConditionalDistributions™ package must be loaded.

If a copy of Mathematica is not available, a free reader is available from the makers of Mathematica at
www.wolfram.com/mathreader. With this reader, one can read and print the electronic version of this

report. The tool is not, however, executable without Mathematica.
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Appendix D

Checking of Conditional Distributions Package Against
Nelson's Examples

This appendix uses the new functions defined in Reliability ConditionalDistributions"®
on the Weibull and lognormal conditional distribution examples in Nelson's text. This was done to

informally verify that our functions work correctly.

Load the Package
First the Reliability ConditionalDistributions ™ package is loaded:
Needs["Reliability ConditionalDistributions™"]

The current version of the package is:

? ConditionalDistributions
ConditionalDistributions.m (version 1.0) is a package that contains
conditional distributions for the Weibull and lognormal distributions

thereby supplementing many of the Weibull and lognormal functions
in the standard add-on package Statistics ContinuousDistributions.

Weibull Functions

a Parameters for Nelson's Example

Nelson illustrates the conditional Weibull distribution with a model for generator field windings. This

example can be found in pp. 69-71 of his text. The shape and scale parameters are, respectively:
shape = 2;

scale = 13;




The scale parameter is in years.

s Conditional CDF

The syntax for this function is:

? ConditionalCDF

ConditionalCDF[distribution, t, tprime] gives the
probability using the specified distribution that an
item which has reached the age tprime will fail by time t.

The probability of failure in the next two years for a winding that is 6.5 years old is:

ConditionalCDF[WeibullDistribution[shape, scale], 8.5, 6.5]

0.162651

This agrees with Nelson's answer of 0.163.

u Conditional Quantile

The syntax for this function is:

? ConditionalQuantile

ConditiocnalQuantile[distribution, tprime,
g] gives the gth quantile using the specified
distribution for an item that has survived to age tprime.

The median age at failure (the 50th percentile) for a winding that is 6.5 years old is:

ConditionalQuantile[WeibullDistribution[shape, scale], 6.5, .5]

12.625

This agrees with Nelson's answer of 12.6 years. The median for a new winding is:

ConditionalQuantile[WeibullDistribution[shape, scale], 0, .5]

10.8232

This agrees with Nelson's answer of 10.8 years.
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= Conditional Reliability

The syntax for this function is:

? ConditionalReliability
ConditionalReliability[distribution, t, tprime] gives the

probability using the specified distribution that an item
which has reached the age tprime will survive to time t.

The probability of survival for the next two years for a winding that is 6.5 years old is:

ConditionalReliability[WeibullDistribution[shape, scale], 8.5, 6.5]

0.837349
This agrees with Nelson's answer of 0.837.

s Conditional PDF

The syntax for this function is:

? ConditionalPDF

ConditionalPDF[distribution, t, tprime] gives the probability
density function evaluated at t for an item which has
reached the age tprime using the specified distribution.

Nelson doesn't have a numerical example for this function. We can calculate the probability of failure in
the next two years for a winding that is 6.5 years old by integrating the ConditionalPDF function
from 6.5 to 8.5 years. This is what was done more simply with the ConditionalCDF function above.

NIntegrate[
ConditionalPDF[WeibullDistribution[shape, scale], t, 6.5], {t, 6.5, 8.5}]

0.162651
This agrees with Nelson's answer of 0.163.

s Conditional Hazard

The syntax for this function is:




? ConditionalHazard
ConditionalHazard[distribution, t] gives the hazard function

evaluated at t for an item using the specified distribution.
The conditional hazard is uneffected by the age of the item

Nelson doesn't have a numerical example for this function. We can calculate the probability of survival in
the next two years for a winding that is 6.5 years old by integrating the ConditionalHazard function
from 6.5 to 8.5 years, changing the sign of the result and then taking the base e antilog. This is what was
done more simply with the ConditionalReliability function above.

e—J': ':Conditionalxazard[Weibullnist:ribution[sh‘pe, scale],t] dt

0.837349
This agrees with Nelson's answer of 0.837.

m Conditional Mean Life

The syntax for this function is:

? ConditionalMeanLife

ConditionalMeanLife[distribution, tprime] gives the
conditional mean age at failure for an item which has
reached the age tprime using the specified distribution.

For a winding that is 6.5 years old, the mean age at failure is:

ConditionalMeanLife[WeibullDistribution[shape, scale], 6.5]

13.5933
This agrees with Nelson's answer of 13.6 years.

= Conditional Mean Life Remaining

The syntax for this function is:

——



? ConditionalMeanLifeRemaining

ConditionalMeanLifeRemaining[distribution, tprime] gives the
conditional mean life remaining at failure for an item which
has reached the age tprime using the specified distribution.

For a winding that is 6.5 years old, the mean life remaining is:

ConditionalMeanLifeRemaining[WeibullDistribution[shape, scale], 6.5]

7.09334

This agrees with Nelson's answer of 7.1 years.

Lognormal Functions

Parameters for Nelson's Example

Nelson illustrates the conditional lognormal distribution with a model for locomotive controls. This
example can be found in pp. 67-69 of his text. Unfortunately, he uses the base 10 logarithm form of the
lognormal distribution which is somewhat unusual. We use the more common base e form so we must
convert his lognormal parameters first. The lognormal distribution functions defined in the standard
add-on package Statistics’ContinuousDistributions’ is use the base e form. The package is loaded thus:

Needs["Statistics ContinuousDistributions™"]

We need to obtain the base e log mean and log standard deviation in terms of their base 10 counterparts.
We need two equations in order to solve for these two unknowns. The median for the base e form of the

lognormal distribution can be calculated by the Quantile function:

baseemedian = Quantile[LogNormalDistribution[mue, sigmae], 1/ 2]

mue
e

The base e parameters log mean and log standard deviation are named mue and sigmae, respectively. The

median for the base 10 form of the distribution is:

basetenmedian = 1010

lomulo
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The base ten parameters are named mul0 and sigmal0. Equating these medians we have the first equa-

tion we need:

eqnl = baseemedian == basetenmedian;

The mean for the base e form of the lognormal distribution can be calculated by the Mean function:

baseemean = Mean [LogNormalDistribution[mue, sigmae]]

i 2
emues 2ige’

The mean for the base 10 form of the distribution can be found on page 34 of Nelson's text as equation
3.6:

Log{10] sigma10?
Z

basetenmean = 10™%*

10mu10+-§— sigmal0? Log[10]

Equating these means we have the second equation we need:
egn?2 = baseemean == basetenmean;
Solving for the base e log mean and log standard deviation we obtain:

sol = Solve[{eqnl, eqn2}, {mue, sigmae}]

— Solve::ifun : Inverse functions are being used by Solve, so some solutions
may not be found; use Reduce for complete solution information. More..

{{mue - Log[10™°%], sigmae » -1/2 \/—Log [10™107] 4 Log[lo“‘“m*% sigmal0® Log[10] ] }

{mue - Log{10™°], sigmae - /2 \/—Log[lomulo] + Log [1gm10+  signaio® Log[10] 11}

The second solution is the one that falls within the domain of the parameters. We can use the first part of

it to write a function for converting a base 10 log mean to base e:

muConversion[mul0 ] := Log[10™1°]

For Nelson's control unit example, we convert his base 10 log mean to base e:
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logmu = muConversion[2.236]
5.14858

We can use the second part to define a function for obtaining the base e log standard deviation from the

base 10 parameters:

sigmaConversion[mul0_, sigmal0l_] :=
NEY \/ (-Log[lo’““lo] + Log[lomlo‘% sigmal0® Log[10] ] )

For Nelson's control unit example, we obtain the base e log standard deviation from his base 10 parame-
ters thus:
logsigma = sigmaConversion[2.236, 0.320]

0.736827

Now we can apply our conditional lognormal functions to Nelson's example and check our answers

against his.

Conditional CDF

The syntax for this function is:

? ConditionalCDF
ConditionalCDF[distribution, t, tprime] gives the

probability using the specified distribution that an
item which has reached the age tprime will fail by time t.

The probability that a locomotive control unit with 240 thousand miles on it will fail in the next 20

thousand miles is:

ConditionalCDF[LogNormalDistribution[logmu, logsigmal], 260, 240]
0.116939
This is quite close to Nelson's answer of 0.118. The small disagreement is likely due to the fact that he

was using standard normal tables and/or to rounding at intermediate steps. The probability of failure in

the next 20 thousand miles for a control unit with 120 thousand miles is:
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ConditionalCDF[LogNormalDistribution[logmu, logsigmal], 140, 120]

0.112459

This agrees with Nelson's answer of 0.112. The probability of failure in the next 20 thousand miles for a

new control unit is:

ConditionalCDF[LogNormalDistribution[logmu, logsigma], 20, 0]

0.00174018
This agrees with Nelson's answer of 0.018.

m Conditienal Quantile

The syntax for this function is:

? ConditionalQuantile

ConditionalQuantile[distribution, tprime,
q] gives the gth quantile using the specified
distribution for an item that has survived to age tprime.

The median age at failure (the 50th percentile) for a control unit with 240 thousand miles on it is:

cOnditionaIQuantile[LogNormalDistribution[logmu, logsigma], 240, .5]

355.

This agrees with Nelson's answer of 355 thousand miles. The median for a new control unit is:

ConditionalQuantile[LogNormalDistribution[logmu, logsigma], 0, .5]

172.187
This agrees with Nelson's answer of 172 thousand miiles.

= Conditional Reliability

The syntax for this function is:
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? ConditionalReliability
ConditionalReliability[distribution, t, tprime] gives the

probability using the specified distribution that an item
which has reached the age tprime will survive to time t.

The probability of survival for the next 20 thousand miles for a control unit that already has 240 thousand

miles on it is:

ConditionalReliability[LogNormalDistribution[logmu, logsigma], 260, 240]

0.883061

This agrees with Nelson's answer of 0.882. The probability of survival for the next 20 thousand miles for

a control unit that already has 120 thousand miles on it is:

ConditionalReliability[LogNormalDistribution[logmu, logsigma], 140, 120]

0.887541

This agrees with Nelson's answer of 0.888. The probability of survival for the next 20 thousand miles for

a new control unit is:

ConditionalReliability[LogNormalDistribution[logmu, logsigma], 20, 0]

0.99826

This agrees with Nelson's answer of 0.9982.

» Conditional PDF

The syntax for this function is:

? ConditionalPDF
ConditionalPDF[distribution, t, tprime] gives the probability

density function evaluated at t for an item which has
reached the age tprime using the specified distribution.

Nelson doesn't have a numerical example for this function. We can calculate the probability of failure in

the next 20 thousand miles for a control unit that has 120 thousand miles on it already by integrating the
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ConditionalPDF function from 120 to 140 thousand miles. This is what was done more simply with
the ConditionalCDF function above.

NIntegrate[ConditionalPDF[
LogNormalDistribution[logmu, logsigma], t, 120], {t, 120, 140}]

0.112459

This agrees with Nelson's answer of 0.112 obtained above.

m Conditional Hazard

The syntax for this function is:

? ConditionalHazard

ConditionalHazard[distribution, t] gives the hazard function
evaluated at t for an item using the specified distribution.
The conditional hazard is uneffected by the age of the item

Nelson doesn't have a numerical example for this function. We can calculate the probability of survival in
the next 20 thousand miles for a control unit that has 240 thousand miles on it by integrating the Condi -
tionalHazard function from 240 to 260, changing the sign of the result, and then taking the base e
antilog. This is what was done more simply with the ConditionalReliability function above.

Exp[-NIntegrate[ConditionalHazard[
LogNormalDistribution[logmu, logsigma], t], {t, 240, 260}]]

0.883061
This agrees with Nelson's answer of 0.882.

m Conditional Mean Life

The syntax for this function is:

? ConditionalMeanLife
ConditionalMeanLife[distribution, tprime] gives the

conditional mean age at failure for an item which has
reached the age tprime using the specified distribution.

For a control unit that has 240 thousand miles on it, the mean mileage at failure is:




ConditionalMeanLife[LogNormalDistribution[logmu, logsigma], 240]

424.339

This agrees with Nelson's answer of 423. The mean mileage at failure for a new control unit is:

ConditionalMeanLife[LogNormalDistribution[logmu, logsigma], 0]

225.888

This agrees with Nelson's answer of 225.

m Conditional Mean Life Remaining

The syntax for this function is:

? ConditionalMeanLifeRemaining

ConditionalMeanlLifeRemaining[distribution, tprime] gives the
conditional mean life remaining at failure for an item which
has reached the age tprime using the specified distribution.

For a control unit that has 240 thousand miles on it, the mean life remaining is:

ConditionalMeanLifeRemaining[LogNormalDistribution[logmu, logsigma], 240]

184.339

If we add the 240 thousand miles that the control unit already has on it we obtain a mean life of:

% + 240

424 .339

This agrees with Nelson's answer of 423.
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